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Preface

This project makes part of the author’s graduate studies to obtain a masters
degree in Electrical Engineering at ETH Ziirich. The topic was proposed by
the author. It took place at EPF Lausanne at the signal processing labora-
tory (LTS) during an exchange semester under supervision of Dr. Andrzej
Drygajlo.

All source code is distributed under General Public License (GPL). For
classification non-GPL toolboxes were used.
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Introduction

Music Transcription is the task of analyzing a digital audio stream in terms
of fundamental frequencies and transform the information into music nota-
tion (i.e. a MIDI stream). If there are different instruments playing, each
instrument is to be assigned to a different notation score.

Instrument Recognition is the task of classifying a part of an audio stream
to an instrument. This "part” of the audio stream may be a short time analysis
window, one note, a whole melody or chord progression.

This project focuses on signal analysis and doesn’t treat the task of tran-
scription to a notation score. Instrument Recognition focuses on one instru-
ment only; the tenor saxophone. The musical environment for the saxophone
is restricted to a typical jazz quartet consisting of saxophone, piano, bass
and drums. The acoustical environment is not restricted. The music may
be recorded in a studio with artificial acoustic environments or it may be
recorded live under difficult quality conditions.

The framework is structured in a way that would allow real-time process-
ing of a continuous audio stream with few modifications. On a Pentium III
calculation time is too long for a real-time application. However, it was not
an aim of the project to optimize calculation time.

Contributions A new technique to detect multiple fundamental frequen-
cies in polyphonic music has been developed during work on this project.

Unlike most of the previous work the focus in Instrument Recognition
was on polyphony and not on the number of different instruments to be
recognized. The number of notes played at the same time is unknown as
is the number of instruments. Under these circumstances, possible features
have been evaluated in terms of usability for classification.

Organization This report is organized as follows:

e Chapter 1 discusses previous work and underlying theory of importance
to this project.

e Chapter 2 introduces the method for multiple FO detection in poly-
phonic music.

e Chapter 3 discusses different features and models for classification.
e Chapter 4 presents performance tests for instrument classification.

e Chapter 5 summarizes the results and discusses possible improvements
of the framework.






Chapter 1

Background

There is only little specific theory on instrument recognition and music tran-
scription. However, speech / speaker recognition is a similar task with a wide
research community and their theories can be used on music as well. In this
section a brief overview of related theory and publications is given.

Before discussing possible techniques, we should have a look at the signal
characteristics of music:

e There are harmonic and percussive instruments. Percussive instruments
will be ignored for later discussion.

e Different sources can generate different "sounds" at different points in
time and space.

e A sound consists of a fundamental frequency (F0) and harmonics
(n-FO0).

e For the music to sound agreeable to the human ear, FOs have certain
ratios between each other, called intervals. These intervals are fractions
of small integer numbers (prime: 1, octave: %, fifth: % on)

e Because of these ratios and the resulting overlapping of harmonics,
different sources are:

— not statistically independent
— not every time-frequency-bin belongs to only one source (not W-

disjoint orthogonal [2])

e In stereo live recordings with one stereo microphone, the spacing of
different sources affects intensity and phase differences between left
and right channel.



CHAPTER 1. BACKGROUND

e In studio recordings there is no phase information because usually only
intensity-stereophony is used. Even the intensity is mixed close around
the center of the panorama today (unlike most "Beatles” recordings
for example, where instruments are assigned either to the left or right
channel).

e One saxophone usually plays at one pitch at the time. Polyphonic
sounds are possible but rarely used.

e Piano and bass can play more than one note at the time. So one of
these instruments produces more than one FO

1.1 Source separation

A first idea was to separate the instrument’s signals with Independent Com-
ponent Analysis (ICA), for example Blind Source Separation (BSS). But ICA
relies on the assumption that the signal is statistically independent which is
not at all the case. So ICA is not considered to be useful. In [2], Degenerate
Unmixing Estimation Technique (DUET) is introduced. DUET separates
signals by clustering the amplitude-delay histogram. According to spacial
distribution the sources have different amplitude for left and right and a
phase delay. DUET assumes W-disjoint orthogonality and therefore does not
perform well for overlapping harmonics. Different possibilities to avoid that
problem are introduced in [8], [9] and [10].

1.2 FO estimation

For this project, source separation is an overkill. In fact there is no need
to really separate the signals. All we need is information on characteristics
of each of the signals in the mixture. First of all we need all FOs of all
instruments. Techniques introduced in [7], [6] and [5] contributed to that
part of the project.

1.3 Instrument recognition
Previous work on recognition of musical instruments includes [1] and [4] for
recognizing monophonic samples of many different instruments.

In [3]|, two instruments may play at the same time. Gaussian Mixture
Models are combined with missing feature theory.

10



1.3. INSTRUMENT RECOGNITION

This project focuses on polyphony, simplifying the problem by only de-
ciding if the instrument is a saxophone or not.

11






Chapter 2

Polyphonic FO Detection

The first problem to solve when detecting one instrument playing with others
is developing a robust algorithm to obtain all fundamental frequencies (FO0s)
of each instrument at a given time. For the saxophone we can introduce some
simplifications. A saxophone usually plays one note at a time, so there’s only
one fundamental frequency to catch. Moreover, saxophone is predominant
in volume what makes it more likely to be detected. The treatment of that
problem is discussed in chapter 2.2

The method described in this chapter performs well for saxophone, but
it does not reliably detect all soft notes played by other instruments.

A second topic is to group the FOs to notes. This can not only be done
by collecting FOs in semitone-bins because two instruments might play the
same note for a while. Furthermore we need time-domain features for later
classification. In Section 2.3 an agent structure based on the idea in [5] is
described which groups F0 trajectories to notes.

2.1 Signal analysis

The signal analysis structure is described in Appendix B. Table 2.1 shows
the parameters chosen for signal analysis.

2.2 FO detection algorithm

An algorithm for multiple FO detection should:

e be independent of the existence of the fundamental frequency in the
signal (as is the human ear)

e avoid marking harmonics of F0s as new F0s. But:

13



CHAPTER 2. POLYPHONIC FO DETECTION

sampling frequency 11°025 Hz
windowing function raised cosine

window size 1024 samples
window overlap 512 samples
FFT size 1024 samples
=frequency resolution 5.38 Hz
=lowest resolvable semitone 90 Hz
=-time resolution 93 ms
lowest FO freq. 100 Hz
highest FO freq. 1000 Hz

Table 2.1: Parameters for signal analysis

e still recognize two different FOs in octave interval.

e detect overlapping harmonics to know which harmonics contribute to
reliable information.

The first step is to take the autocorrelation function (ACF) of the spec-
trum because this solves the problem of missing fundamental frequency and
enhances peaks over noise. Prewhitening the spectrum with the cepstrally
lowpass liftered spectral envelope improves the ACF.

In the ACF, peaks of the quasi-periodic spectrum repeat at n - F'0 what
leads to unwanted virtual FOs. The Enhanced Summary Autocorrelation
Function described in [6] solves that problem but showed the disadvantage
of canceling octaves and enhancing only strong FOs in this application. To
solve these problems, the Cepstrally Enhanced Autocorrelation Function has
been developed.

2.2.1 Cepstrally Enhanced Autocorrelation Function
(CEACF)

The motivation to use the cepstrum to improve the spectrum-ACF is that
harmonics repeat not at n- F'0 but at ﬁ By multiplying ACF and cepstrum
peaks, only true-F(s remain, as Figure 2.2.1 shows. There are some obstacles.
First, the cepstrum is sampled uniformly on a time axis. This axis has to be
inverted to be comparable with the spectrum-ACF frequency axis. Because
the good resolution for high quefrencies is mapped to a lower resolution
at low frequencies, peaks may be lost. To avoid this, peaks are detected
before inverting the quefrency axis as shown by vertical lines in the middle

14



2.2. F0 DETECTION ALGORITHM
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Figure 2.1: The different steps to obtain the CEACF for two FOs at about
110Hz and 220Hz

plot of Figure 2.2.1. Now, a virtual Cepstral Enhancement Function (CEF)
is generated by convolving a dirac-representation of detected peaks with a
raised cosine.

This CEF is now multiplied with the spectrum-ACF to obtain the
CEACEF. All peaks in the CEACF that are higher than an arbitrary threshold
are taken as FOs.

2.2.2 Frequency interpolation

For transcription and even for detecting overlapping harmonics, the frequency
resolution of 5.38 Hz is not sufficient. To get a resolution of 0.34 Hz the
spectrum around each FO is interpolated by a factor of 16.
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CHAPTER 2. POLYPHONIC FO DETECTION

2.2.3 Overlapping harmonics detection

To detect which harmonics are overlapping, every F0 detected is extended to
all its harmonics (n-F0) within the given frequency range. Harmonics closer
than a certain tolerance are masked as overlapping.

2.3 Agent structure

After finding the FOs we need to group them together to notes in time domain.
To obtain characteristic information on notes we need to have the whole note
from attack until the end, not only some fixed-width window’s information.
To be as flexible as possible, an agent structure similar to the one described in
[5] is used. Agents are data structures that are created dynamically whenever
a new possible FO trajectory starts and keep track of that trajectory until
that note ends. The rules are kept very simple. For a new set of F(s following
rules apply:

e all FOs that are closer than a semitone to the last FO of an existing
agent are assigned to that agent (bending is possible),

e all agents without a new F0 are "killed”. Their note has ended. If they
have a minimal length they will be classified later,

e for every FO not assigned to an agent, a new agent is created.

It was planned to extend these rules by some instrument adaptive algorithms,
adapting instrument-specific features but also record-specific features like
position in space (that could be obtained by Computational Auditory Scene
Analysis, CASA). But finally these simple rules are performing well enough.

2.4 Results

Figures 2.2 and 2.4 show the output of FO detection. Every line corresponds
to one agent. The detection performance is good for strong FOs but softer
ones are not reliably detected. In our case this might even be an advantage
because the probability for saxophone F0s to be recognized is higher than
for piano. However, it is a disadvantage not to get all FOs because we need
them for detecting overlapping harmonics.

Figure 2.3 and 2.5 show only the strongest F0 for every window. Without
any instrument recognition this already extracts the saxophone quite well for
chris. But because the saxophone doesn’t play the whole time we still need
a classifier.

16



2.4. RESULTS

As you see in Figure 2.5 in sample mobetter the saxophone is not always
predominant

17
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Figure 2.2: Top: Spectrogram of sample chris. Bottom: Detected F0Os
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gram. Almost always it’s the saxophone’s F0s being predominant.
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Chapter 3

Instrument Recognition

The second part of this project consists of recognizing saxophone sound. Each
note detected with methods described in Chapter 2 has to be classified to
either "sax” or "nosax”.

3.1 Features

This chapter discusses all features that have been evaluated. Only a few
of them were really used. The pairs of features being plotted against each
other are chosen intuitively and might not be optimal in terms of statistical
(in)dependence.

All features are normalized to their 2-o-range. The feature plots show
their 4-o-range.

3.1.1 Spectral features

Spectral features are calculated for each frame of an agent. Because of the
reasons explained in Section 3.1.2, only FO-dependent features are used.

The only features used for classification are specEnvMSErel and harmEn-
vMSErel.

specEnvMSErel In music there are no formants like in speech recognition,
but the spectral envelope of an instrument is a characteristic feature.
In polyphonic music we cannot just take the envelope of the spectrum
because this envelope corresponds to a superposition of all instruments
playing at that time.

The first step is to build an envelope consisting only of the amplitudes
at harmonic frequencies of each FO. Without overlapping harmonics it
would work. But this case is rare..

23



CHAPTER 3. INSTRUMENT RECOGNITION

When harmonics overlap we don’t know if they add up or cancel each
other out as this depends on the phase. It was tried to find some phase-
dependency between harmonics. But with given analysis framework, no
correlation of phase between harmonics could be found.

To get a measure of how big the influence of the overlaps is, signal
energy of a FO is compared to the summed signal energy of all over-
lap contributors. Even if the signal energy itself cannot be calculated
correctly when overlaps occur, it gives a good estimation. This energy
ratio is taken as an indicator of reliability of harmonic amplitudes.
In this context we define reliability as the ratio of own signal energy
to the energy of all overlapping signals (Harmonic Overlap Energy Ra-
tios, HOERs). No overlap means a reliability of 1. Figure 3.1 shows two
model envelopes and one F(0’s harmonic amplitudes with reliabilities in
the lower plot.

To compare one F0’s harmonics to the model envelopes we assume
that overlap errors are distributed symmetrically around zero for each
harmonic and the sum of all errors for one FO is zero. This way we
can set the average amplitude to zero and calculate the distance of
harmonics to each model envelope. Using the reliabilities as weights
we can calculate a weighted Mean Square Error (MSE) which finally is
represented by this feature.

harmEnvMSErel As discussed in [4], not only the spectral envelope of
harmonics but also the inter-harmonic-amplitude ratios are of interest
for classification. First it was tried to use the autocorrelation function
of harmonic’s amplitudes but finally it worked better to use harmonic
ratios.

The first few harmonic amplitudes (n-F0, n = 2..5) are divided by the
amplitude of the fundamental frequency. Independent of FO frequency
we get a measure for ratios between first harmonics. The reason not to
go beyond 5 harmonic is the fact that given the sampling rate and
maximum FO0 frequency defined as 1 kHz, 5 is the minimal number of
harmonics every F0 has.

logF0 Defining the range for possible FOs according to saxophone range
already cuts away low bass notes and high piano notes, so this feature
is of no use unless other features are dependent on frequency (which is
already compensated for above features).

energyRel Relative signal energy of one particular FO divided by total sig-
nal energy in analysis window. As mentioned in section 2.4 the relative

24
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Figure 3.1: Spectral envelope models and reliability of harmonics

signal energy is a good indicator for saxophone because it is very often
predominant. But here models are trained with one-class samples only,
so there’s no predominance and this feature is useless. For future work
it should be considered to train models with mixtures of both classes.

3.1.2 Cepstral features

The two plots in Figure 3.4 show that cepstral coefficients would be very
useful for classifying instruments when not playing together as in the training
sets used.

Unfortunately tests showed that these features are useless when both
classes of instruments play together. In this case, all agents obviously get the
same cepstral features for the same frames what makes clear that “global”
frame features are of no use.

25



CHAPTER 3. INSTRUMENT RECOGNITION
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Amplitude [dB] Amplitude [dB]
~ /\ .

Figure 3.5: Typical temporal amplitude curves. Top: saxophone, bottom:
piano / bass

3.1.3 Temporal features

Temporal features are particularly useful for longer notes, meaning more
than 10 windows. Unfortunately the FO-detection usually does not catch the
whole note from beginning to the end. By extending an agent to earlier and
later windows the whole note can be found. This is done by reading out the
spectrogram at the agent’s frequency beyond both ends of the agent.

stdFreq Standard deviation if FO frequency. Piano should have no change
at all in frequency but saxophone can bend notes or play vibrato (fluc-
tuation in pitch).

noteLen Note length. Saxophone can play longer notes than piano. This
feature is weak because for short notes there’s no difference a priori
probability. The note length is obtained by first widening the agent in
time and then count the number of time steps with an amplitude above
a threshold.

medianAmpDiff Median of amplitude derivative
crest Ratio between maximum amplitude and mean amplitude

riseMax Maximum positive derivative. This feature could be improved sub-
stantially by increasing time resolution.

decayMax Minimum negative derivative. This feature could be improved
substantially by increasing time resolution

3.2 Models

Three different classifiers have been evaluated: Gaussian Mixture Mod-
els (GMM), Support Vector Models (SVM) and Neuronal Networks (NN).
GMDMs showed to perform best on the weak features introduced in the last

28
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CHAPTER 3. INSTRUMENT RECOGNITION

sections. SVM and NN sometimes showed similar performance but because
of reported success with GMM in [3], work was concentrated on GMM. The
following discussion will therefore be on GMM.

Spectral features used were specEnvMSErel and harmEnvMSFErel intro-
duced in Section 3.1.1. Temporal Features used were stdFreq, noteLen, medi-
anAmpDiff and crest introduced in Section 3.1.3.

Two different GMMs are trained for each instrument class. One model is
trained with spectral features and another one with temporal features. Table
3.1 lists samples used (see Appendix D for details on mentioned samples)
and the number of training vectors for the spectral and temporal models.
Because temporal features can only be obtained for every agent and not for
every window as the spectral features, the training set for temporal model is
small.

It would be possible to combine spectral and temporal models but then
we would have to take the mean of all spectral features for one agent so the
training set would be as small as for the temporal model.

No characteristic temporal dependency of spectral features could be found
(i.e. short term spectral envelope that is used in speech recognition but is
not useful here. This might be because of insufficient time resolution). So, for
later classification spectral features will be averaged for one agent because
this shows better results.

For the spectral features, a model with 50 Gaussians was trained, for
temporal features 10 Gaussians. The final likelihood consists of the sum of the
likelihood ratios for spectral and temporal features. Spectral and temporal
features have the same weight.

A weak point that has to be improved is the choice of training samples.
Only samples where only instruments of one class play are used. But finally
we want to classify mixtures of all instruments. So the training set is not a
good representation of the data to be classified later. (i.e. the predominance
of saxophone in most mixtures is a very strong feature but is ignored when
training one-class samples only.) The reason not to train mixtures was the
amount of work to sort agents by instrument by hand.
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3.2. MODELS

Class | Used samples total time | spec.feat. | temp.feat.
sax sax-range, 106s | 1032 vect. | 117 vect.
sax-irgendwas,
sax-chromatic
nosax | nino-bass, 142s | 1493 vect. | 346 vect.

nino-pianobass,
piano-range,
amorous-piano,
mobetter-pianobass

Table 3.1: Training set data. Samples used (see Appendix D), total time and
number of training vectors for spectral and temporal features.
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Chapter 4

Experiments and Results

Because of the tight timing of the project only few performance tests have
been done. First, the performance is tested on one-class samples, then two
different jazz recordings of different quality are tested.

In Appendix D you find a list of all samples used for training and testing.

4.1 One-class samples

Samples where only instruments of one class appear were tested as a first per-
formance check under easy conditions. If the aim would have been to classify
one-class samples, the performance would have been better by choosing cep-
stral coefficients as features (See Section 3.1.2).

class sample correct notes | false alarms
saxophone only sax-range-freely 34 7
piano only amorous-piano 12 )
bass only invocation-bass 10 0
piano & bass nino-pianobass’ 139 15

‘ overall performance ‘ ‘ 88% ‘ ‘

Table 4.1: Classification performance for one-class samples

Imade part of training set
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CHAPTER 4. EXPERIMENTS AND RESULTS

4.2

Table 4.2 shows classification performance for sample chris (see appendix
D), a studio recording with clear, predominant saxophone playing slow

Mixed instruments samples

melody. In this favorable case the system performs reasonable

Table 4.3 shows classification performance for sample mobetter (see ap-
pendix D), a live recording with one stereo microphone in a bar. Classification

performance is poor in this case.

See Figures 4.1 and 4.2 to compare true saxophone trajectories to classi-

fication output.

is sax | is nosax | % correct
classified as sax 18 5 78%
classified as nosax 8 11 57%

Table 4.2: Classification performance for chris

is sax | is nosax | % correct
classified as sax 7 8 46%
classified as nosax 22 24 52%

Table 4.3: Classification performance for mobetter
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Chapter 5

Conclusion

This report introduced a method for multiple FO detection and instrument
classification on single note basis.

There were not enough tests to exactly define the circumstances under
which the system performance is satisfying. Generally, the saxophone has
to be predominant for robust FO detection. Long notes are easier to classify
than short ones. So a slow melody is more likely to be classified correctly
than a virtuous improvisation.

Major contributions are the “Cepstrally Enhanced Autocorrelation Func-
tion” (CEACF), introduced in Section 2.2.1, and the reliability indicator
"Harmonic Overlap Energy Ratios” (HOERs) used to obtain spectral fea-
tures introduced in Section 3.1.1.

CEACEF is a useful function in multiple FO detection because it enhances
true FO peaks in the spectrum and cancels harmonics. HOERs are an ap-
proach to the problem of information loss (amplitude, phase) at overlapping
harmonics.

5.1 Suggestions for improvements

FO detection The detection of FO frequencies and their trajectory in time
should be based on different FFTs to optimize frequency and time resolution
independently.

CEACF depends on an arbitrary threshold. This could be avoided by
modifying the peak detection algorithm to adapt the threshold dynamically.

Instrument recognition First of all, the training set is weak. It has too
little data and, as discussed in Section 3.2, the training set is not exactly
representing the data that should be classified. For training, one-class samples
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CHAPTER 5. CONCLUSION

were used, but the aim is to classify mixtures of all classes. This way we loose
saxophone predominance in mixtures as a classification feature.

The analysis stops at note level. A further layer could group notes to
melodies (i.e. by using Hidden Markov Models).
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Appendix A

Usage Guide

This Chapter explains briefly the usage of the whole analysis framework. For
a detailed list on function dependencies, see Appendix B.

A.1 Classifying a sample

We will step by step analyze sample chris in Matlab.

1.

Load configuration

>>init

Load models. See Section A.2 on how to obtain instrument models.
>>load instModels

Load sample chris. If you want to analyze other recordings than the
ones listed in Appendix D you have to edit prepareData.m.

>>snd = prepareData(’chris’)

The struct snd now contains the signal and some parameters.

Analyze the sample. This will take a while
>>snd = analyzeAll(snd)

F0s and their trajectories are saved to snd

Show spectrogram with detected FOs
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>>showSpec(snd)

6. Classify all agents with GMM

>>classifyAll(snd, instModels, >GMM’)

. If you want to have more information on an analysis window or agent,

start
>>evalSelect (snd,instModels,>GMM’)

Using the mouse you can select an agent or analysis window and all
important analysis steps are displayed in different figures. You get even
more plots by turning on debug mode

>>sw.DebugMode=1

A.2 Building instrument models

1. Load configuration

>>init

. Load instrument training samples and analyze them. This takes a long

time.

>>insts=prepareModelData

. Obtain feature vectors according to feature definitions in

getFOFeatures, getWinFeatures and getTemporalFOFeat.

>>insts=prepareModelFeatures(insts)

. Train GMM, NN and SVM.

>>generateModels

Models are now saved in struct instModels

For feature evaluation use

>>evalFeatures(insts)

after step 3.
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Appendix B

Function Dependencies

This Appendix lists all Matlab functions according to their dependencies.

analyzing samples
— init

— prepareData

L

reshapeWav

— analyzeAll
— analyzeWin
— ceacf
- getQOs
— getFOs
— getHarmonics

— detectOverlaps

— getSpacialDist

— agencylnput

— showSpec

- mySpecOverlay

— traceAgents

— evalSelect
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generating and using models
— prepareModelData

— prepareData

— getHarmonicsModel
— getSpecEnvModel

— prepareModelFeatures

L

collectFeatures
L getAgentFeatures
— getFOFeatures
t getSpecModelMSE
getHarmModelMSE

— getWinFeatures

— getTemporalFOFeat

L widenAgent Amp

— evalFeatures

— generateModels
trainGMM
trainNN
trainSVM

— classifyAll

L classify Agent
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Data Structures Reference

This Appendix lists all data structs used.
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snd
— [|[] stereo stereo signal
— |] mono mono signal
— var parameters
— f
— fLen
— fMax
— cepAx
— t
— tLen
— tMax
— an analysis data
— []l| Spec spectrogram
— ][] Ceps cepstrogram
— [I[] SpecLiftered liftered spectrogram
— masks masks to show with showSpec
— [l Fo
— [][|] FirstF0
— [I[] Overlap
— [I[] CasaAmp
— |[|[] CasaPhi
— wins all win structs
L [| win
— reSynth re-synthesized sound
— agents
L [| agent
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— [l ceps

— [] ACF

— [| CEACF
— || ovlpInd

— || ovlpFreq
— [0

f0

— freq

— ind

— a

— || harmFreqgs

— || harmAmp

— energyAbs

— energy

— || harmNACF normalized acf of harmAmp
— [] harmInds

— [] reliab

— dA intensity difference btw. L/R channel
— dPhi delay bte. L/R channel

agent

— birth

— alive

— valid

— lastFreq

— || trace f0 indices for each window
— meanEnergy

— age

— startFreq

— death
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[| insts
— snd
— name
— specEnv
— harmEnv
instModels
— names instrument names
— GMM GMM structs
— [] specModel
— || tempModel
— NN NN structs
— specModel
— tempModel
— SVM SVM structs
— specModel
— tempModel
— dataPoints number of training vectors
— numSpecData
— numTempData
— stats parameters for feature normalization
— specMu
— specStd
— tempMu
— tempStd
— || specEnv model spectral envelope for harminocs
— || harmEnv model envelope for harmonic’s ratios
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Appendix D

Audio Data Sources

Class Inst. Label

Dur.

Properties

sax ts sax-range

sax ts

sax ts

sax ts

sax-chromatic

sax-range-freely

sax-irgendwas

34s

31s

15s

11s

Tenor sax playing long
forte notes over the whole
usual instrument’s range
with short breaks between
notes, played by the author
Legato chromatic scale
from low Bb to high G,
played by the author

Free, rather quick playing
over whole range, played
by the author

Free, rather quick playing,
played by the author

nosax | p

nosax | p

piano-range

amorous-piano

6s

28s

Single piano notes in the
range of interest, found on
Internet

Piano solo taken from
a recording of the song
"amorous cat” (Stan Getz)
from ”bluetorangsch” jazz
quartet
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Class

Inst.

Label

Dur.

Properties

nosax

nosax

nosax

nosax

b
b

p, b

p, b

nino-bass
invocation-bass
nino-pianobass

mobetter-pianobass

16s

20s

75s

17s

Bass-only intro in Michael
Brecker’s "el nino”
Bass-only in Joshua Red-
man’s "invocation”

Piano solo with bass in
Michael Brecker’s el nino”
Piano solo with bass in
live recording of the song
"mo better blues” played
by “bluetorangsch” jazz
quartet recorded with one
stereo microphone 2 me-
ters in front of the stage in
a bar

all

all

ts, p, b

ts, p, b

chris

mobetter

14s

20s

First part of melody in
Chris Potter’s recording
“gratitude”. A studio
recording with predomi-
nant saxophone playing
long notes and soft accom-
paniment,

First part of melody in
live recording of the song
mo better blues” played
by ”bluetorangsch” jazz
quartet recorded with one
stereo microphone 2 me-
ters in front of the stage in
a bar
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